The (L p , L q ) bilinear Hardy-Littlewood function for the tail

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mathematische Zeitschrift Some remarks on the Hardy-Littlewood maximal function on variable L spaces

We show that any pointwise multiplier for BMO(R) generates a function p from the class P(Rn) of those functions for which the Hardy-Littlewood maximal operator is bounded on the variable L space. In particular, this gives a positive answer to Diening’s conjecture saying that there are discontinuous functions which nevertheless belong to P(Rn). Mathematics Subject Classification (2000): 42B25

متن کامل

The Bilinear Maximal Function Maps into L P for 2=3 < P 1

The bilinear maximal operator de ned below maps L L into L provided 1 < p; q <1, 1=p+ 1=q = 1=r and 2=3 < r 1. Mfg(x) = sup t>0 1 2t Z t t jf(x+ y)g(x y)j dy In particular Mfg is integrable(!) if f and, g are square integrable, answering a conjecture posed by Alberto Calder on. 1 Principal Results In 1964 Alberto Calder on de ned the maximal operator Mfg(x) = sup t>0 1 2t Z t t jf(x y)g(x y)j d...

متن کامل

L(p) estimates for the bilinear Hilbert transform.

For the bilinear Hilbert transform given by: H fg(x) = p.v.integral f(x - y)g(x + y) dyy, we announce the inequality parallel H fg parallel (p(3) ) </= K(p(1) ) (,p(2) ) parallel f parallel (p(1) ) parallel g parallel (p(2) ), provided 2 < p(1), p(2) < infinity, 1/p(3) = 1/p(1) + 1/p(2) and 1 < p(3) < 2.

متن کامل

A Sharp Estimate for the Hardy-littlewood Maximal Function

The best constant in the usual L norm inequality for the centered Hardy-Littlewood maximal function on R is obtained for the class of all “peak-shaped” functions. A function on the line is called “peakshaped” if it is positive and convex except at one point. The techniques we use include variational methods. AMS Classification (1991): 42B25 0. Introduction. Let (0.1) (Mf)(x) = sup δ>0 1 2δ ∫ x+δ

متن کامل

On the Variation of the Hardy–littlewood Maximal Function

We show that a function f : R → R of bounded variation satisfies VarMf ≤ C Var f, where Mf is the centered Hardy–Littlewood maximal function of f . Consequently, the operator f 7→ (Mf) is bounded from W (R) to L(R). This answers a question of Hajłasz and Onninen in the one-dimensional case.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Israel Journal of Mathematics

سال: 2010

ISSN: 0021-2172,1565-8511

DOI: 10.1007/s11856-010-0077-y